SYNTHESIS OF 6-AZABENZO[a]PYRENE

Kiyoshi Fukuhara,* Naoki Miyata and Shozo Kamiya

Division of Organic Chemistry, National Institute of Hygienic Sciences

Kamiyoga, Setagaya, Tokyo 158, Japan

Summary: 6-Azabenzo[a]pyrene was synthesized from perinaphthenone and 1-iodo-2-nitrobenzene.

Aza-analogs of polycyclic aromatic hydrocarbons are carcinogenic and environmental substances in addition to their parent compounds.¹ Among the structurally possible twelve azabenzo[a]pyrenes (azaBaPs), the syntheses of 4-, 7-, 8-, 10- and 12-azaBaPs have been reported.² No compounds are known which have a nitrogen atom in the 1-, 3- and 6-position. Since these positions are involved in the metabolism of BaP and are susceptible to addition of NO_X to form nitroBaPs as powerful mutagens, 1-, 3- and 6-azaBaPs should be of particular interest.³ In this letter, we report the synthesis of 6-azaBaP (4) by a simple and practical method using a commercially available perinaphthenone (1) and 1-iodo-2-nitrobenzene (2) as starting materials.

Our approach involves construction of the $C_{(10a)}$ - $C_{(10b)}$ bond by a reaction that $C_{(10a)}$ acts as a nucleophile toward a $C_{(10b)}$ electrophile⁴ and then intramolecular Schiff base formation of $C_{(5a)}$ and $N_{(6)}$. Perinaphthenone (1) was added to the aryllithium prepared from 2 and *n*-butyllithium in THF as rapidly as possible at -78 °C. Subsequent treatment of the reaction mixture with activated MnO₂ in benzene afforded 3. The yield of 3 was 65 % after the purification by silica gel column chromatography. Catalytic hydrogenation of 3 in THF - EtOH (5:1) in the presence of PtO₂ gave 4 in 90 % yield. Its N-oxide 5 was derived from 4 using *m*CPBA in CH₂Cl₂ (95 % yield).

The structures of 4 and 5 were characterized with 400 MHz proton NMR and mass spectrometry. High resolution mass spectrum of 6-azaBaP indicated the molecular component (C₁₉H₁₁N). The lack of a singlet resonance peak of 4 and 5 showed that the nitrogen heteroatom was located at 6-position. The chemical shifts of the protons of 4 and 5 were downfield as compared with those of BaP, resulting from the nitrogen heteroatom at 6-position. In the case of 5, the peri protons (H5 and H7) were largely shifted to downfield by

the effect of N-oxide function. The proton NMR resonance assignment (Table 1) was performed by NOE and ¹H 2-DCOSY.

Further investigation concerning chemical and biological properties of 4 is now underway.

Table 1

	H ₁	H ₂	Нз	H4	H5	Н6	H ₇	Нв	Н9	H ₁₀	H ₁₁	H ₁₂
6-azaBaP	8.27	8.00	8.21	8.18	8.22	-	8.50	7.95	7.80	8.83	8.83	8.42
6-azaBaP N-oxide	8.33	8.08	8.26	8.42	8.86	-	8.94	7.95	8.05	9.27	8.96	8.32
BaP	8.24	7.98	8.09	7.93	8.00	8.52	8.29	7.78	7.84	9.05	9.06	8.33

References and notes

- a) Y. Kitahara, H. Okuda, K. Shudo, T. Okamoto, M. Nagao, Y. Seino and T. Sugimura, Chem. Pharm. Bull.,
 26, 1950 (1978); b) W. Levin, A. W. Wood, R. L. Chang, S. Kumar, H. Yagi, D. M. Jerina, R. E. Lehr and A. H. Conny, Cancer Res., 43, 4625 (1983); c) K. Kano, B. Uno, N. Kaida, Z-X, Zhang, T. Kubota, K. Takahashi and Y. Kawazoe, Chem. Pharm. Bull., 35, 1702 (1987); d) J. M. Sayer, R. E. Lehr, S. Kumar, H. Yagi, H. J. C. Yeh, G. M. Holder, C. C. Duke, J. V. Silverton, C. Gibson and D. M. Jerina, J. Am. Chem. Soc., 112, 1177 (1990).
- a) H. Vollman, H. Becker, M. Corell, H. Streeck and G. Langbein, *Justus Liebigs Ann. Chem.*, 531, 1 (1937);
 b) W. M. Whaley, M. Meadow and C. N. Robinson, *J. Org. Chem.*, 19, 973 (1954);
 c) R. E.Phillips, Jr., G. H. Daub and J. A. Hunt, *J. Org. Chem.*, 37, 2030 (1972).
- a) K. Fukuhara, N. Miyata, M. Matsui, K. Matsui, M. Ishidate, Jr. and S. Kamiya, Chem. Pharm. Bull., submitted for publication; b) J. N. Pitts, Jr., B. Zielinska and W. P. Harger, Mutation Res., 140, 81 (1984).
- 4. C. F. Koelsch and J. A. Anthes, J. Org. Chem., 6, 558 (1941).
- The condensation reactions of perinaphthenone and aniline derivatives hardly proceeded under several conditions.
- 6. The sufficient purification is necessary for further reaction.
- Compound 4; m. p. 160 162 °C; high-resolution MS, calcd for C19H11N 253.089, found 253.090.

(Received in Japan 13 April 1990)